MÉMENTO 100% VISUEL

Danièle Augendre • Anne Barrau • Anne Besnier • Ghislaine Drouet • Cédric Favro • Loïc Jain • Karine Quebre • Sandrine Lescure • Martine Mazoyer • Sophie Nourry • Sophie Rubéo-Lisa • Laurent Soyer • Nicole Tanda

Le cycle

O Diastole

ooden tees verificules ta place of the light to the light tee and all second to the light to the 3 calle des at these regulation in the form the design of the state of

230 CARTES MENTALES

SCIENCES BIOLOGIQUES ET MÉDICALES

UE 2.1 Biologie fondamentale

UE 2.2 Cycles de la vie et grandes fonctions

UE 2.3 Santé, maladie, handicap, accidents de la vie

UE 2.4 Processus traumatiques

UE 2.5 Processus inflammatoires et infectieux

UE 2.6 Processus psychopathologiques

UE 2.7 Défaillances organiques et processus dégénératifs

UE 2.8 Processus obstructifs

UE 2.9 Processus tumoraux

UE 2.10 Infectiologie et hygiène

UE 2.11 Pharmacologie et thérapeutiques

L'UE2en 230 cartes mentales

Danièle Augendre **Anne Barrau Anne Besnier Ghislaine Drouet** Cédric Favro Loïc Jain Karine Quebre Sandrine Lescure Martine Mazoyer **Sophie Nourry** Sophie Rubéo-Lisa **Laurent Soyer** Nicole Tanda

Danièle Augendre est cadre de santé formateur à l'IFSI de Nevers. Elle a rédigé les UE 2.7 et 2.8.

Anne Barrau est cadre de santé, ancienne formatrice en IFSI, exerçant actuellement en unité de soins. Elle est titulaire d'un master 2 en sciences de l'éducation. Elle a rédigé l'UE 2.3.

Anne Besnier est médecin gynécologue-obstétricien et enseigne à l'IFSI de Cherbourg-Cotentin. Elle a corédigé l'UE 2.9.

Ghislaine Drouet est cadre de santé formateur à l'IFSI de Cherbourg-Cotentin, diplômée d'un Master en ingénierie pédagogique. Elle a corédigé l'UE 2.9.

Cédric Favro est professeur de Biochimie et Physiologie dans les IFSI Bichat, Beaujon et Picpus de l'APHP. Il a rédigé les UE 2.1 et 2.2.

Loïc Jain est cadre de santé en filière onco-hématologique au CHR de Pontoise. Il a rédigé l'UE 2.10.

Sandrine Lescure est coordinatrice de la formation à l'IFSI Tenon (Paris). Elle a rédigé l'UE 2.5.

Martine Mazoyer est psychologue clinicienne en maison de santé pluridisciplinaire et en établissement médico-social. Elle est intervenante vacataire à l'Université Paris-Sud pour les étudiants infirmiers. Elle a rédigé l'UE 2.6.

Sophie Nourry est directrice des soins à l'IFSI de Nevers. Elle a corédigé l'UE 2.8.

Karine Quebre est cadre de santé formateur à l'IFMS de Cahors. Elle a rédigé l'UE 2.4.

Sophie Rubéo-Lisa est cadre de santé formateur à l'IFSI de la Pitié-Salpêtrière. Elle a rédigé l'UE 2.11 S1.

Laurent Soyer est cadre de santé, formateur consultant et chercheur indépendant. Il est titulaire d'un Master en ingénierie de la santé et d'un Master 2 en sciences de l'éducation. Il a corédiaé l'UE 2.11 S3 et S5.

Nicole Tanda est puéricultrice cadre de santé formateur, maître de conférence titulaire d'un phD et chercheuse en sciences infirmières. Elle est titulaire d'un master 2 en sciences de l'éducation. Elle a corédigé l'UE 2.11 S3 et S5.

Création de la maquette et mise en pages : CB Defretin

Couverture : Primo & Primo

ISBN: 978-2-311-66421-8

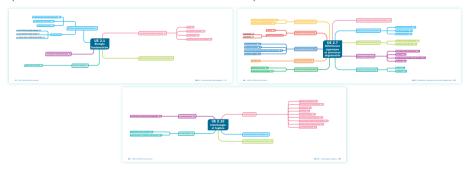
Toute représentation ou reproduction, intégrale ou partielle, faite sans le consentement de l'auteur, ou de ses ayants droit aux ayants cause, est illicite (loi du 11 mars 1957, alinéa 1er de l'article 40). Cette représentation ou reproduction par quelque procédé que ce soit, constituerait une contrefaçon sanctionnée par les articles 425 et suivants du Code pénal.

© Septembre 2023, Éditions Vuibert – 5, allée de la 2º DB, 75015 Paris

www.vuibert.fr

Guide d'utilisation

Ce petit livre pratique et visuel a été conçu pour vous permettre de réviser efficacement toutes les notions de l'**UE 2 « Sciences biologiques et médicales »**. Pour ce faire, le livre est **articulé sur plusieurs niveaux** afin d'adapter votre mode de révision à vos habitudes, vos besoins et votre avancement dans l'année.


Les 150 cartes mentales ont été pensées selon deux modèles systématiques pour s'adapter à toutes les typologies de notions abordées :

- pour les notions « générales », la carte mentale se base sur le modèle « Quoi ? Quand ? Pour qui ? Pour qui ? Pour qui ? Comment ? Où ? » complété des notions importantes, pour faire le tour de tous les aspects de chaque notion ;
- pour les notions plus spécifiques, une organisation en sous-concepts permet d'en détailler les spécificités pour bien comprendre ce qui s'articule dans la notion évoquée.

Toujours dans le but de faciliter les révisions, vous trouverez dans ce livre **deux types de sommaire** :

- un **premier sommaire linéaire et général** (voir page suivante) qui liste **toutes les notions** et les organise **par semestre** pour savoir ce qu'il faut maîtriser pour les évaluations du semestre 1 au semestre 6 ;
- des **sommaires intermédiaires par UE, présentés sous la forme de cartes heuristiques en double-page** : ainsi, au-delà du classement par UE, vous comprendrez comment s'articulent les notions entre elles et lesquelles sont en corrélation.

En fin d'ouvrage, vous trouverez un **index** pour retrouver facilement la carte mentale associée à chaque concept.

Sommaire

UE 2.1 : Biologie fondamentale

SEMESTRE 1

Les niveaux d'organisation du corps humain	12
L'atome	13
Les molécules inorganiques	14
Les biomolécules	15
Définition et composition des cellules eucaryotes	16
Les différents types d'échanges membranaires	17
La communication intercellulaire	18
Le métabolisme cellulaire	19
Le cycle cellulaire des cellules somatiques	20
Le cycle cellulaire des cellules sexuelles	21
Les cellules souches et la différenciation cellulaire	22
Les différents types de tissus biologiques	23
Notions autour du neurone et de la transmission nerveuse	24
Le myocyte et la contraction musculaire	25
L'expression génétique	26
Notions autour de l'hérédité	27

UE 2.2 : Cycles de la vie et grandes fonctions

SEMESTRE 1

Le système tégumentaire	3
L'anatomie du squelette	3

Classification, structure et physiologie de l'os	3
Les articulations et les mouvements articulaires	3
Les muscles squelettiques	3
L'organisation anatomique et fonctionnelle	
du système nerveux (SN)	3
Composition et fonctions	
du système nerveux central (SNC)	3
Composition et fonctionsdu système	
nerveux périphérique (SNP)	3
Les nerfs du système nerveux périphérique	4
L'anatomie de l'œil	4
La physiologie de la vision	4
L'oreille et l'audition	4
La gustation et l'olfaction	4
Le système endocrinien	4
Le sang	4
Les étapes de l'hémostase	4
Le système circulatoire et la circulation cardiovasculaire	4
L'anatomie du cœur	4
Le cycle cardiaque	5
L'automatisme cardiaque	5
Les vaisseaux sanguins et la physiologie vasculaire	5
L'anatomie du système respiratoire	5
La physiologie de la respiration	5
L'anatomie du système digestif	5
La physiologie de la digestion	5
L'anatomie du système rénal et urinaire	5

La formation de l'urine et la miction	58
L'équilibre acido-basique	59
La thermorégulation	60
Le système lymphatique	61
Le système immunitaire et les différentes immunités	62
L'anatomie de l'appareil reproducteur féminin	63
La physiologie de l'appareil reproducteur féminin	64
L'anatomie et la physiologie de l'appareil reproducteur masculin	65
La fécondation et la gestation	66
L'accouchement et la lactation	67

UE 2.3 : Santé, maladie, handicap, accidents de la vie

SEMESTRE 2

Concepts autour de la santé	72
Notions en lien avec le risque et son rapport à la santé	73
Les accidents de la vie courante	74
La maladie	75
La maladie chronique	76
Le handicap	77
Le droits des personnes en situation de handicap	78
La douleur et la souffrance	79
L'annonce de la maladie chronique et les phases	
d'adaptation	80
La notion d'aidants	81

UE 2.4 : Processus traumatiques

SEMESTRE 1

Le processus traumatique	86
Les spécificités des fractures	87
Les soins infirmiers prévalents dans	
le processus traumatique	88
Rôle IDE dans la surveillance des dispositifs médicaux et	
dépistage des complications précoces	89
La fracture de la clavicule	90
La luxation de l'épaule	91
La fracture de l'extrémité supérieure de l'humérus	92
La fracture de la diaphyse humérale	93
La fracture diaphysaire du cubitus (ulna) ou du radius	94
La fracture de Pouteau-Colles (ou fracture de l'extrémité	
inférieure du radius)	95
La fracture des métacarpiens et des phalanges	96
Les plaies des membres supérieurs et	
plus spécifiquement de la main	97
La fracture de l'extrémité supérieure du fémur	98
La fracture de la diaphyse fémorale	99
La fracture bimalléolaire	100
L'entorse de la cheville	101
Les traumatismes du crâne	102
Les traumatismes rachidiens	103
Les traumatismes thoraciques	104
Les traumatismes abdominaux	105
Les traumatismes pelviens	106
Les polytraumatismes	107
Les brûlures	108

L'amputation des membres	10
Les traumatismes psychologiques	11

UE 2.5: Processus inflammatoires et infectieux

SEMESTRE 3

Concepts autour des maladies infectieuses	114
Les infections émergentes-réémergentes	115
Les moyens et modes de détection d'un agent infectieux	116
La prévention des maladies infectieuses	117
Prévention des infections : la vaccination	118
Prévention des infections : les sérums	119
Prévention des infections : la lutte contre les épidémies	120
Les différents types de traitement des infections	121
La traçabilité obligatoire des maladies infectieuses	122
Le VIH/SIDA	123
Les hépatites virales	124
La grippe	125
La tuberculose	126
Le paludisme	127
Les infections respiratoires : bronchites, BPCO	
et bronchiolite	128
Les infections respiratoires : pneumopathie infectieuse	
Les infections respiratoires : COVID-19	130
Les infections ostéoarticulaires	131
Les infections neuroméningées	132
Les infections urinaires	133
Les infections cutanées	134
Notions en lien avec les états septiques	135

UE 2.6: Processus psychopathologiques

SEMESTRE 2

Concepts autour de l'offre de soins en psychiatrie	140
Les composantes du cadre thérapeutique en psychiatrie	141
Les différents modèles de thérapie des troubles	
psychiques	142
Les facteurs favorisants des troubles psychiques	143
Le symptôme en psychiatrie	144
Les troubles liés au visuel et au comportement	145
Les troubles du langage	146
Les troubles de la pensée	147
Les troubles de la mémoire	148
Les troubles de la conscience de soi et	
de l'environnement	149
Les troubles de l'humeur et de l'affectivité	150
Les troubles des perceptions	151
Les troubles des conduites instinctuelles	152
Les troubles des conduites sociales	153
Le syndrome délirant	154
SEMESTRE 5	
<u> </u>	
Les troubles de la personnalité chez l'adulte	
Les troubles anxieux	
Les troubles associés à des traumatismes psychiques	
Les troubles de l'humeur chez l'adulte	158
Les troubles du spectre de la schizophrénie et	
autres troubles psychotiques	
Les troubles du comportement alimentaire chez l'adulte	160

Les troubles du développement chez l'enfant	162
L'autisme et les troubles envahissants du développement	163
Les troubles dépressifs du nourrisson, de l'enfant	
et de l'adolescent	.164

UE 2.7 : Défaillances organiques et processus dégénératifs

SEMESTRE 4

Les différents mécanismes d'adaptation	
du corps humain	168
L'hypertension artérielle (HTA)	169
L'insuffisance cardiaque	170
L'insuffisance veineuse	171
L'insuffisance respiratoire chronique (IRC)	172
L'insuffisance respiratoire aiguë (IRA)	173
Le diabète	174
Dysfonctionnement thyroïdien : l'hyperthyroïdie	175
Dysfonctionnement thyroïdien : l'hypothyroïdie	176
L'insuffisance rénale chronique (IRC)	177
L'insuffisance rénale aiguë (IRA)	178
La maladie d'Alzheimer	179
La maladie de Parkinson	180
La sclérose latérale amyotrophique	
(SLA ou maladie de Charcot)	181
La sclérose en plaques	182
Les troubles de réfraction (amétropie)	183
La cataracte	184
La dégénérescence maculaire liée à l'âge (DMLA)	185

Le glaucome	186
La surdité	18
L'arthrose	188
L'ostéoporose	189
L'apparition des escarres	190
L'apparition des ulcères de jambes	19

UE 2.8 : Processus obstructifs

SEMESTRE 3

Le processus obstructif	19
L'athérosclérose	19
L'insuffisance coronarienne chronique ou angor	
d'effort stable	198
L'insuffisance coronarienne aiguë : l'angor instable	19
L'insuffisance coronarienne aiguë :	
l'infarctus du myocarde	201
La thrombose artérielle aiguë	20
L'artériopathie oblitérante	
des membres inférieurs (AOMI)	202
La thrombose veineuse profonde (TVP)	203
L'emboliepulmonaire (EP)	204
L'accident vasculaire cérébral ischémique	20!
L'accident vasculaire hémorragique	20
La bronchopneumopathie obstructive (BPCO)	20'
L'asthme	20
Les apnées-hypopnées obstructives du sommeil (SAHOS).	20
L'œdème aigu du poumon (OAP)	211
La lithiase urinaire	21

L'occlusion intestinale	.2
L'occlusion des voies biliaires	2

UE 2.9 : Processus tumoraux

SEMESTRE 5

L'épidémiologie des cancers	2
Concepts autour de la cancérogénèse	2
Les 3 niveaux de prévention dans le dépistage du cancer	22
Les différentes classifications des tumeurs	22
Les différents types de traitement d'un cancer	2
Les étapes dans la prise en charge et	
l'accompagnement d'un patient cancéreux	22
Le cancer du sein	22
Le cancer colorectal	22
Le fibromyome utérin	2
Le cancer de la prostate	2
L'adénome de la prostate	22
Le cancer bronchopulmonaire	2
Généralités sur les hémopathies malignes	2
La leucémie de l'enfant	23
Les hémopathies malignes de l'adulte	2

UE 2.10 : Infectiologie et hygiène

SEMESTRE 1

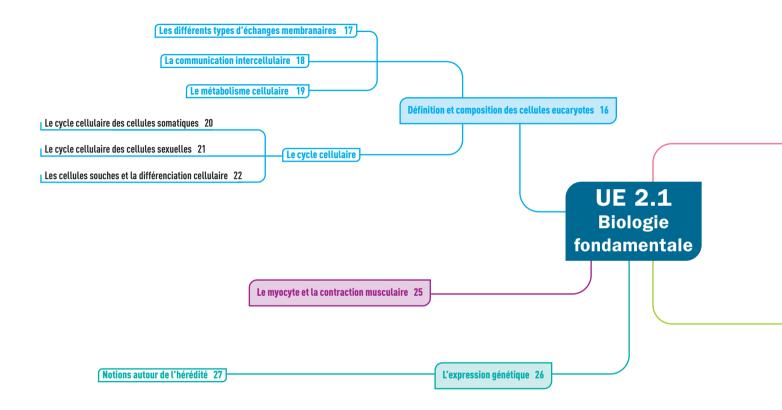
Les bactéries et mycobactéries	.23
Les virus et le processus de l'infection virale	23

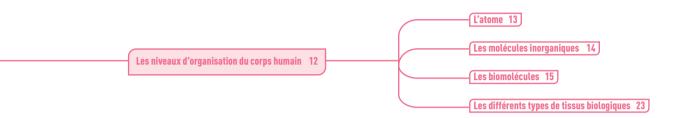
Les parasitoses	238
Les mycoses	239
L'écologie microbienne	240
Les différents modes de transmission	241
Les mécanismes d'action des agents infectieux	242
Concepts autour de la résistance virale	243
La résistance bactérienne	244
Le système immunitaire	245
Les différents mécanismes	
du système immunitaire	246
Les infections afférentes aux soins (IAS)	247
Les règles d'hygiène	248
L'hygiène des locaux en collectivité	249
Gestion des déchets : les différents	
types de déchets	250
Les différents movens de lutte contre l'infection	251

UE 2.11: Pharmaco	logie et thérapeutiqu
-------------------	-----------------------

SEMESTRE 1

Le médicament	256
Notions autour de la pharmacocinétique	257
Notions autour de la pharmacodynamie	258
Les différentes voies d'administration	
des thérapeutiques	259
SEMESTRE 3	
Les antibiotiques	260
Les psychotropes	261
Les antithrombotiques	262
Les antalgiques	263
Les anti-inflammatoires	264
La chimiothérapie anti-cancéreuse	265
Les anesthésiques	266


Les médicaments des anesthésies loco-régionales	267
La iatrogénie médicamenteuse	268
La typicité des médicaments en pédiatrie	269
La typicité physiologique des personnes âgées	
et les médicaments	270


SEMESTRE 5

Le circuit du médicament	27
La réglementation des médicaments : listes et stupéfiants.	272
La prescription médicale	273
La prescription infirmière	27
Rôle de l'IDE de la prescription médicale	
à la surveillance du patient : les étapes	27
Les erreurs médicamenteuses	27
Les thérapeutiques non médicamenteuses	277
Les différents types de thérapeutiques	
non médicamenteuses	278

UE 2.1

Biologie fondamentale

Notions autour du neurone et de la transmission nerveuse 24

Il est représenté par les atomes et les molécules. Un organisme vivant est composé à 96% des **atomes** C, H, O et N. L'assemblage de ces derniers est à l'origine des quatre familles de **biomolécules** qui caractérisent un être vivant : glucides, lipides, protides et acides nucléiques.

• Le niveau chimique

Les biomolécules s'organisent en une structure ordonnée et douée de fonctionnalités : la **cellule**. Celle-ci respire, se nourrit, se reproduit, libère des déchets et interagit avec son environnement. Les organismes vivants existent sous une forme qui peut être unicellulaire ou pluricellulaire. Chez l'être humain, les cellules sont spécialisées et différenciées : myocyte, hématie, hépatocyte, ostéocyte, etc.

2 Le niveau cellulaire

6 Le niveau de l'organisme en entier

L'organisme humain résulte de l'assemblage organisé et interconnecté de ses nombreux systèmes et appareils. Ces derniers assurent le maintien chez l'organisme d'un état d'équilibre face aux fluctuations internes et externes de son environnement.

Les niveaux d'organisation du corps humain Le niveau tissulaire

Les différentes cellules spécialisées du corps humain se regroupent en amas, réseaux ou faisceaux pour former les différents tissus biologiques dont la finalité est la réalisation d'une (le plus souvent) fonction précise : absorption, sécrétion, protection, soutien, contraction, etc. On distingue quatre familles de tissus dans le corps humain (voir page 23) : épithélial, conjonctif, musculaire et nerveux

6 Le niveau systémique

Un appareil ou un système est composé d'un ensemble d'organes dont les fonctions sont apparentées et accomplissent en synergie une activité essentielle de l'organisme : mouvement, ventilation, digestion, etc.

4 Le niveau organique

L'assemblage de différents tissus conduit à un **organe** ayant une ou plusieurs fonctions caractéristiques selon les tissus qui le composent. Ex. : sécrétions et brassage (par contraction) chez l'estomac.

Aussi appelé élément, constitue la plus petite partie indivisible de la matière et est capable d'interagir avec d'autres atomes.

Définition

L'atome est composé :

- d'un noyau contenant un ou plusieurs protons chargés positivement, étroitement liés à un ou plusieurs neutrons non chargés. L'ensemble protons + neutrons correspond aux nucléons (= masse de l'atome);
- d'un ou plusieurs **électrons** chargés **négativement** qui gravitent autour du noyau. L'atome est neutre si protons = électrons.

Composition d'un atome

Propriétés de liaisons

L'atome

Les atomes peuvent interagir entre eux et former deux types de liaisons :

- les liaisons fortes (ou covalentes). Une liaison covalente se forme lorsqu'un atome partage un électron avec un électron d'un autre atome. Ces liaisons interviennent dans la structure et la rigidité du squelette des biomolécules (ex. : liaison C-C) → l'énergie pour les rompre est élevée. Une molécule est l'union par liaison covalente d'au moins deux atomes ;
- les liaisons faibles (ou non covalentes), résultent d'interactions électrostatiques entre les atomes → l'énergie pour les rompre est faible. On en distingue 4 types : liaisons hydrogènes, interactions ioniques, interactions hydrophobes et liaisons de Van der Waals. Elles interviennent dans l'interaction entre les molécules et, à plus large échelle, dans les réactions du métabolisme.

Propriétés électriques

Quand l'atome perd un ou plusieurs électron(s), il perd respectivement une ou plusieurs charges négatives. L'atome devient positif et est appelé cation. Ex.: Na* (ion sodium).

Quand l'atome acquiert un ou plusieurs électrons, il a alors un excédent de charges négatives et est appelé **anion**. Ex.: Cl⁻ (ion chlorure). Selon le nombre d'électrons perdus ou acquis par l'atome, on parle d'électrons mono- (1), di- (2) ou trivalent (3). Ex.: Ca²⁺ (ion calcium).

Principale molécule qui compose le corps humain (~ 60 % de la masse corporelle chez un adulte).

Rôles dans l'organisme :

- solvant : l'eau dissout les composés polaires (glucose, urée, Na*, etc.) pour former une solution ;
- rôle chimique (réactions d'hydrolyse);
- rôles physiologiques : composant du sang, lubrifiant des articulations, thermorégulation (sueur), protection mécanique amortissant les chocs (liquide cérébrospinal, liquide amniotique, etc.).

Gaz inodore et incolore composant environ 21 % de l'air atmosphérique. Indispensable à toutes les cellules de l'organisme qui l'utilisent pour produire de l'énergie sous forme d'ATP (adénosine-triphosphate) grâce au processus de respiration cellulaire.

Transporté dans le sang sous deux formes : dissoute dans le plasma (1,5 %) et sous forme liée à l'hémoglobine des hématies (98,5 %).

Le dioxygène (0,)

L'eau (H₂0)

Outre le NO (monoxyde d'azote) qui dispose de nombreux rôles (myorelaxant, vasodilatateur, neurotransmetteur, etc.), il s'agit essentiellement de déchets issus du métabolisme azoté: ammoniac (NH₃), ions ammonium (NH,*), urée, acide urique.

Les molécules inorganiques contenants N

Les molécules inorganiques Le péroxyde d'oxygène (H₂O₂) Plus connu sous l'appellation « eau oxygénée ».

Utilisé en tant qu'agent bactéricide par les macrophages et abondamment produit à la suite à des réactions d'oxydation pour différents processus métaboliques dans les peroxysomes (voir page 16).

Le dioxyde de carbone (CO₂)

Essentiellement présents dans les nucléotides (ATP, GTP, etc.), les acides nucléiques (ADN et ARN), les phospholipides membranaires, le cristal osseux (sous forme d'hydroxyapatite ou phosphates de calcium).

Les phosphates jouent également le rôle de tampons (dans les cellules et l'urine) et interviennent dans la communication intracellulaire.

Les ions phosphates (PO, 3-)

Principal déchet issu de la dégradation du glucose et des acides gras (voir page 15).

Transporté dans le sang sous trois formes : dissoute (7-10% %), liée à l'hémoglobine (20-30% %), et sous forme d'ions hydrogénocarbonate HCO_3 -(> 50 %). Ce dernier constitue alors un tampon du sang.

Molécules composées d'un groupement carbonyle (CO) et d'au moins deux groupements hydroxyles (OH). 2 types :

- oses (glucides simples) : glucose, galactose, fructose, ribose ;
- osides (glucides complexes/au moins 2 oses liés) : diosides (lactose. saccharose), polyosides (amidon, glycogène, cellulose),

Rôles: énergie (glucose), réserve (amidon, glycogène), structure (ribose des nucléotides : cellulose de la paroi des végétaux, etc.).

Molécules hydrophobes à amphiphiles composées essentiellement de C. H et O

Parmi les plus connus : les acides gras (AG), les triglycérides (ou triacylglycérols TAG), les phospholipides et le cholestérol.

Rôles: énergie (AG), réserve (TAG), structure (phospholipides), précurseurs (ex. : cholestérol et hormones stéroïdiennes).

Lipides

Les

biomolécules

Acides

Glucides

nucléiques

Polymères (ou assemblages) de nucléotides dont on distingue:

- l'ADN (acide désoxyribonucléique) : en double brin. support de l'information génétique et de la transmission des caractères héréditaires :
- les ARN (acide ribonucléique) : en simple brin, impliqués dans l'expression des gènes et sa régulation. Un **nucléotide** est composé d'un pentose, d'une base azotée (A, T, G, C ou U) associée à un, deux ou trois phosphates. Certains ont un rôle énergétique (ATP).

Protides

Molécules composées de C, H, O et N. On distingue :

- les acides aminés (AA) : protide de base avec une fonction acide COOH et une fonction amine NH.:
- les **peptides** : composés de 2 à 50 AA ;
- les protéines : composées de plus de 50 AA.

Rôles : structure (collagène, kératine), communication (hormones insuline, ADH), transport plasmatique (albumine), catalyse (enzyme), immunité (anticorps), mouvement cellulaire (actine, myosine), etc.

Vitamines

Groupe de molécules nutritives organiques indispensables en petites quantités et regroupées en 2 catégories :

- les vitamines hydrosolubles (vitamines C et groupe B) ;
- les vitamines liposolubles (vitamines A, D, E et K).

Rôles: antioxydant (C et E), vision (A), homéostasie phosphocalcique (D), coaqulation (K), métabolisme (groupe B).

Unité structurale et fonctionnelle du monde vivant. Une cellule possède au moins un **matériel génétique** (ADN) et un **cytoplasme** délimité par une **membrane plasmique**. On distingue :

- les **cellules eucaryotes** qui caractérisent le règne **animal**, **végétal** et celui des **champignons**. Leur matériel génétique est contenu dans un noyau ;
- les **cellules procaryotes** qui caractérisent les **bactéries** et les **archées**. Elles ne possèdent pas de noyau et presque jamais d'organites.

Bicouche composée de **phospholipides**, de **cholestérol** (pour les cellules animales) et de **protéines**.

Fonctions: frontière entre les milieux intra- et extracellulaires, maintien de la forme de la cellule, transports membranaires, communication et cohésion intercellulaires, etc.

rieur du noyau) et cytoplasme.

Membrane plasmique

Novau

Structure tubulaire impliquée dans la division cellulaire.

Centrosome

Définition

Cytosquelette

Définition et composition des cellules eucaryotes

Lytoplasi

Ensemble de **protéines fibreuses**, nucléaires ou cytoplasmiques, associées en polymères.

Responsables de la forme des cellules mais aussi de leurs mouvements et du déplacement des organites protéines, et un à plusieurs **nucléoles**, régions spécialisées dans la synthèse d'ARNr.

Cytoplasme

Structures spécialisées délimitées par une membrane phospholipidique et caractérisant les cellules eucaryotes. On distingue :

Organites

- les **réticulums endoplasmiques rugueux** (synthèse des protéines grâce aux **ribosomes**) et **lisse** (stockage du Ca²+, détoxication et métabolisme des lipides) ;
- l'appareil de Golgi (maturation des protéines) ;
- les **lysosomes** (dégradation de substances intra- et extracellulaires).
- les péroxysomes (détoxication et métabolisme lipidique) ;
- les **mitochondries** (synthèse d'énergie par la **respiration cellulaire**, rôle dans l'**apoptose**).

Constitue le milieu intracellulaire.

Comprend le **hyaloplasme**, ou **cytosol**, liquide dans lequel baignent les **organites** et où se réalisent de nombreuses réactions du **métabolisme**.

Délimité par l'enveloppe nucléaire (double

membrane) elle-même percée de pores qui

assurent échanges entre nucléoplasme (inté-

Contient la chromatine, constituée d'ADN et de

Déplacement de substance au travers de la membrane plasmique suivant leur gradient de concentration, c'est-à-dire du milieu où elles sont le plus concentrées vers le milieu où elles sont le moins concentrées

Processus non-consommateur d'énergie.

Deux types:

- la diffusion simple : mode de transport au cours duquel la substance traverse librement la membrane plasmique (cas des gaz respiratoires 0, et CO_a, de l'eau, de certains acides gras) ;
- la diffusion facilitée · la substance traverse la membrane à l'aide d'un transporteur protéique membranaire (ex. : protéine canal pour les ions Na*, perméase GluT pour le glucose).

Déplacement des substances au travers de la membrane plasmique contre leur gradient de concentration, ce qui nécessite de l'énergie. Deux types:

- primaire (énergie fournie par l'hydrolyse d'une molécule d'ATP) ·
- secondaire (énergie fournie par le cotransport d'un autre soluté, Na⁺ par ex, qui suit son gradient de concentration).

Transport passif

Les différents types d'échanges membranaires

Absorption par la cellule de particules extracellulaires en les englobant dans des vésicules par invagination de la membrane plasmique (ex. : phagocytose des bactéries par les macrophages, une catégorie de globules blancs).

Endocytose

Exocytose

Transport actif

Fusion de vésicules intracellulaires avec la membrane plasmique afin de déverser leur contenu (protéines, neurotransmetteurs, hormones, déchets cellulaires, etc.) dans le milieu extracellulaire.

Ensemble des modes de communication permettant aux cellules d'interagir entre elles et d'interpréter les différents signaux provenant de leur environnement afin d'v répondre de manière adaptée.

Définition

Permanente par les jonctions communicantes, ou jonctions Gap qui forment un « pont » entre les cytoplasmes de deux cellules et permettent à plusieurs cellules d'un même tissu d'agir de manière synchrone (syncytium fonctionnel). Ex. : échanges d'ions pour la synchronisation des contractions des mvocvtes cardiaques.

Transitoire par l'intermédiaire de molécules de surfaces spécialisées (= communication iuxtacrine). Ex. : interaction entre deux cellules immunitaires (coopération).

Communication par contact direct entre deux cellules

Messagers hydrophiles: agissent sur la cellule cible en se fixant sur un récepteur protéique membranaire qui déclenche ensuite des réactions intracellulaires

Messagers ou liposolubles (hormones stéroïdiennes et thyroïdiennes) : agissent sur un récepteur intracellulaire après avoir traversé la membrane plasmique de leur cellule cible. Ces récepteurs agissent ensuite au niveau des gènes. Cas du monoxyde d'azote (NO) : molécule gazeuse qui a la capacité de diffuser localement dans l'environnement des cellules qui le produisent (nombreux effets: immunitaires, vasculaires, etc.).

La communication intercellulaire

Communication par messager chimique

Les types de messagers chimiques

Un messager chimique est synthétisé et libéré par une cellule émettrice suite à une stimulation appropriée. Dans ce cas, la communication peut être :

- paracrine : les messagers chimiques libérés agissent localement sur les cellules situées dans l'environnement immédiat :
- autocrine : le messager chimique, hormone ou cytokine (molécules de l'immunité), agit sur la cellule émettrice qui l'a produit et libéré ;
- synaptique : concerne les neurones et les cellules cibles qu'ils innervent. C'est une communication paracrine spécialisée qui intervient au cours de la transmission synaptique (voir page 24):
- endocrine : les messagers chimiques (hormones) sont synthétisés par des cellules endocrines et libérés dans le sang pour agir sur des cellules cibles situées à distance

Métabolisme cellulaire : ensemble des réactions chimiques, catalysées pas des enzymes, qui se déroulent dans les cellules. Il comprend :

- l'anabolisme : ensemble des réactions de synthèse de molécules et qui nécessitent de l'énergie ;
- le catabolisme : ensemble des réactions qui dégradent les molécules complexes en molécules plus simples pouvant à leur tour être dégradées. Ces réactions libèrent matière et énergie pour l'anabolisme et les fonctions cellulaires.

Définitions générales

On distingue principalement :

- la glycolyse : dégradation cytoplasmique du glucose produisant de l'énergie (ATP). Elle peut être anaérobie (fermentation lactique) ou aérobie (respiration cellulaire) ;
- la glycogénogenèse : réactions d'assemblage de plusieurs molécules de glucose pour former le glycogène¹ ;
- la glycogénolyse : réactions de dégradation du glycogène en plusieurs molécules de qlucose ;
- la néoglucogenèse : réactions qui consistent à fabriquer du glucose à partir de molécules non qlucidiques (ex. : acide lactique ou AA).

Métabolisme protidique

Le métabolisme cellulaire

Métabolisme glucidique

On distingue principalement :

- la protéosynthèse : synthèse des peptides/protéines par les ribosomes par lecture de l'ARN messager (message génétique) ;
- la protéolyse : dégradation des protéines afin de récupérer des AA pour la synthèse de nouvelles protéines (ou de glucose en situation de jeûne) ;
- le catabolisme des acides aminés : séparation de la partie carbonée de la partie azotée des AA (qui aboutit notamment à la formation d'ammoniac et d'urée)

Métabolisme lipidique

On distingue principalement :

- la lipolyse : dégradation des TAG du tissu adipeux en AG et glycérol ;
- la lipogenèse : synthèse de TAG à partir de glycérol et d'AG afin qu'ils soient mis en réserve dans le tissu adipeux ;
- la bêta-oxydation : réactions de dégradation des AG ayant lieu dans les mitochondries afin de produire de l'énergie (ATP) ;
- la cétogenèse : synthèse des corps cétoniques (molécules énergétiques alternatives au glucose) en période de jeûne prolongé.

^{1.} Le glycogène est la forme de réserve et de stockage du glucose.

Cycle cellulaire: séquence d'évènements ordonnés qui permet à une cellule de dupliquer son contenu et de se diviser en deux. Cellules somatiques: toute cellule (animale ou végétale) qui n'est pas une cellule germinale (ou sexuelle). Ce cycle concerne ainsi toutes les cellules du corps capables de division.

Assurer:

- la croissance des tissus durant les périodes embryonnaires, fœtales et juvéniles de la vie ;
- le renouvellement des cellules mortes ;
- l'augmentation des populations cellulaires selon les besoins (immunité, hématopoïèse, etc.).

Quoi ?

Pourquoi?

- Phase GO: un état de quiescence, ou état de repos, au cours duquel la cellule ne se divise pas.
- Durée d'un cycle cellulaire : en moyenne 24 h (dont 1 à 4h de mitose selon les lignées cellulaires).

Notions importantes

Le cycle cellulaire des cellules somatiques

Comment?

Une cellule mère diploïde (2n ; qui contient deux jeux de chromosomes) donne naissance à deux cellules filles identiques. Se déroule en deux temps : interphase et mitose.

Comment se déroule la mitose ?

Phase de division cellulaire (phase M) qui se déroule en 4 (ou 5) étapes :

- prophase : compaction de la chromatine en chromosomes à deux chromatides ;
- **(prométaphase** : fragmentation de l'enveloppe nucléaire et formation du fuseau de division [fuseau mitotique, formé de microtubules]) ;
- métaphase : alignement des chromosomes au niveau de la ligne équatoriale de la cellule ;
- anaphase : séparation et migration des chromatides de chaque chromosome vers les pôles opposés de la cellule ;
- télophase : décondensation des chromatides, reformation de l'enveloppe nucléaire et disparition du fuseau de division. On y observe la cytodiérèse (ou cytocinèse) : séparation de la cellule mère en deux cellules filles.

Comment se déroule l'interphase ? Constitue 90 % de la durée d'un cycle.

Comprend 3 phases:

- G1 (croissance cellulaire et métabolisme intense) ;
- S (réplication : la quantité d'ADN est multipliée par deux);
- G2 (préparation à la mitose).

Cycle cellulaire des cellules sexuelles : séquence d'évènements ordonnés qui permet à une cellule de former quatre cellules filles après avoir subi réduction et brassage de son matériel génétique. Cellules sexuelles : gamètes (ovocytes et spermatozoïdes), ellesmêmes issues des cellules de la lignée germinale. Ce cycle a lieu uniquement dans les **gonades (ovaires** et **testicules)** au cours de la gamétogenèse.

Former des **cellules haploïdes** (n ; qui possèdent un jeu de chromosomes) en vue de la **fécondation**

Former des cellules génétiquement différentes de l'organisme qui les fabrique, par des brassages génétiques, garantissant ainsi l'unicité génétique de l'individu formé à la descendance.

Assurer la transmission du patrimoine génétique à la descendance.

Quoi?

Comment?

Notions

importantes

Des anomalies de séparation des chromosomes homologues au cours de la méiose réductionnelle sont à l'origine d'aberrations chromosomiques (ex.: trisomie 21. monosomie X. etc.).

Pourquoi?

Le cycle cellulaire des cellules sexuelles

> Comment se déroule la méiose?

Une cellule mère diploïde (2n) donne naissance à quatre cellules filles haploïdes (n) et génétiquement différentes.

Se déroule en deux temps : interphase (voir page précédente) et méiose.

Consiste en deux divisions cellulaires successives à partir d'une cellule mère diploïde (2n). Chaque division comporte quatre phases (prophase, métaphase, anaphase et télophase) :

- la méiose réductionnelle (méiose I) : les chromosomes à deux chromatides se regroupent par paires d'homologues. Ces chromosomes homologues se séparent et migrent vers les pôles opposés de la cellule qui se divise alors en deux cellules filles haploïdes (n), chacune contenant donc moitié moins de chromosomes que la cellule mère. C'est au cours de ce processus qu'ont lieu des brassages intra- et interchromosomiques ;
- la méiose équationnelle (méiose II) : les deux cellules filles haploïdes issues de la méiose réductionnelle se divisent selon le même principe que la mitose, ce qui aboutit à quatre cellules filles haploïdes (n).

Cellule indifférenciée capable de générer des cellules spécialisées (par différenciation cellulaire) et de se maintenir dans l'organisme par division symétrique ou asymétrique.

Cellule souche

Concerne notamment les **cellules souches unipotentes**. Ex. : les myocytes qui augmentent en nombre chez le sportif ; l'utérus augmentant de taille durant la grossesse.

Rôle dans l'adaptation physiologique

Principe qui permet de passer de la **cellule œuf** aux nombreuses cellules différenciées et spécialisées de l'organisme (cellule du foie, du pancréas, neurone, etc.). Il existe deux types de division cellulaire de la part des cellules souches :

- division symétrique générant deux cellules souches identiques ;
- division asymétrique générant une cellule progénitrice (différenciée) et une cellule souche.

Différenciation cellulaire

Différents types de cellules souches

Rôle dans le renouvellement tissulaire

Les cellules souches et la différenciation cellulaire

Les cellules souches multipotentes et unipotentes contribuent au renouvellement des cellules après leur mort. Ex. : renouvellement en continu des éléments figurés du sang (une hématie vit en moyenne 120 jours), des cellules intestinales qui meurent au bout de 2 à 5 jours.

Au cours du développement embryonnaire

Les cellules souches pluripotentes embryonnaires (qui forment les 3 feuillets embryonnaires) se différencient et prolifèrent afin de former les cellules de tous les organes du corps. Ex. : ectoderme → épiderme ; mésoderme → muscles, reins, etc. Classement selon leur potentiel de différenciation :

- totipotentes : issues des premières divisions de la cellule œuf et capables de donner naissance à tout type de cellules ;
- pluripotentes: cellules souches capables de donner naissance à l'un des trois feuillets embryonnaires (endoderme, mésoderme, ectoderme) et aux cellules germinales;
- multipotentes: cellules fœtales et adultes donnant naissance à plusieurs types cellulaires spécifiques d'une lignée cellulaire. Ex.: hémocytoblaste qui se différencie en hématies ou bien en leucocytes;
- unipotentes : cellules ne fournissant qu'un seul type cellulaire.

Les cellules pluri-, multi- et totipotentes sont capables d'autorenouvellement.

Tissu biologique : assemblage de cellules, le plus souvent semblables, de même origine et dont l'ensemble concourt à une même fonction

Définition générale

Tissus

musculaires

Composés de deux types de cellules :

- les **neurones**, ou cellules nerveuses. spécialisées dans la réception, l'intégration et la transmission des messages nerveux (voir page 24):
- les cellules gliales, ou gliocytes, assurant protection, nutrition et entretien des neurones.

Les différents types de tissus

Tissus nerveux

biologiques

Composés de **cellules épithéliales** polarisées, jointives et reposant sur une lame basale protéique.

Deux types d'épithéliums selon leur structure :

- épithéliums de revêtement : fonctions de protection (épiderme par ex.) ou d'échanges (épithélium intestinal ou rénal, alvéoles pulmonaires) ;
- épithéliums glandulaires, ou glandes, doués de sécrétion exocrine (glandes salivaires, lacrymales) ou endocrine (thyroïde, hypophyse, etc.). Innervés, avasculaires, se renouvellent continuellement.

Énithéliums Ou tissus épithéliaux)

Tissus conionctifs

Composés de cellules musculaires, ou myocytes, spécialisées dans la fonction de **contraction** (voir page 25).

Trois types de tissus musculaires :

- tissu musculaire squelettique, rattaché au squelette par des tendons : locomotion et expressions du visage (commande volontaire) ;
- tissu musculaire cardiaque (myocarde) : propulsion du sang vers les artères (commande involontaire) :
- tissu musculaire lisse : contraction de la paroi des organes creux (tube digestif, vessie, vaisseaux sanguins, etc.; commande involontaire).

Composés de cellules disjointes et baignant dans une matrice extracellulaire composée de fibres protéigues (collagène, élastine, etc.) et d'une substance fondamentale (ou SF; gel

- +/- visqueux composé d'eau, minéraux et alycoprotéines) : Trois types de tissus conionctifs :
- lâches (riches en cellules) : tissus aréolaire, tissu adipeux. etc.:
- denses (riches en fibres protéigues) : tissus tendineux, etc. ;
- à SF particulière : tissu osseux, tissu sanguin, etc.

Cellule excitable qui forme un réseau câblé permettant la communication au sein du système nerveux, et entre le système nerveux et les organes périphériques.

Composé d'un corps cellulaire (rôle d'intégration), de dendrites (structures réceptrices) et d'un axone unique (structure conductrice) ± myélinisé (= gaine isolante).

L'axone se divise en terminaisons dont les extrémités forment les **houtons**. synaptiques.

Zone de contact fonctionnelle qui s'établit entre un neurone et une autre cellule (neurone ou cellule musculaire ou cellule glandulaire).

La synapse peut être électrique (communication directe entre neurone et cellule) ou **chimique** (communication par libération de **neurotransmetteur**¹).

Synapse

Potentiel de membrane du neurone

Neurone

Transmission synaptique

Communication entre le neurone (présynaptique) et une cellule postsynaptique : le PA arrive au niveau du bouton synaptique, ce qui déclenche la libération du neurotransmetteur dans la fente synaptique; le neurotransmetteur se fixe alors sur un récepteur de la membrane postsynaptique. Il en résulte un flux d'ions à l'origine d'une variation du potentiel de la membrane postsynaptique : le potentiel postsynaptique (PPS), qui peut être excitateur (PPSE) ou inhibiteur (PPSI).

Notions autour du neurone et de la transmission nerveuse

Potentiel d'action (PA)

Différence de potentiel mesurée de part et d'autre de la membrane plasmique du neurone. Elle est liée à la répartition inégale des ions (Na⁺ et K⁺) entre les milieux intra et extracellulaire

On parle de **potentiel de repos** lorsque le neurone est inactif (- 70 mV en moyenne).

Mode d'expression du message nerveux, inversion brève, rapide et importante du potentiel de membrane du neurone (qui passe de -70 à + 30 mV). Nécessite une intensité seuil de déclenchement

A la même amplitude quelle que soit l'intensité de stimulation ;

Se propage le long de l'axone de manière unidirectionnelle ;

Son amplitude ne diminue pas avec la distance (non décrémentiel).

Trois phases: dépolarisation, repolarisation et hyperpolarisation. La vitesse de propagation du PA est accélérée par la gaine de myéline : le PA

« saute » de nœuds de Ranvier en nœuds de Ranvier

^{1.} Un neurotransmetteur est une substance chimique libérée par un neurone.

Voir page 23.

Les différents tissus musculaires

Cas du muscle lisse

Les léiomyocytes (cellules musculaires lisses) :

- sont fusiformes :
- sont capables de contractions coordonnées et/ou soutenues sur de grandes longueurs (parois des vaisseaux sanguins, de la trachée, de l'intestin, etc.);
- ont une contraction nécessitant un afflux massif de Ca²⁺ dans le cytosol, rendu possible grâce aux systèmes nerveux et hormonal, mais aussi grâce à des contrôles locaux et des stimulations mécaniques (étirement).

Organisation longitudinale comprenant plusieurs **faisceaux musculaires** qui regroupent chacun des centaines de cellules de grande taille : **myocytes** ou **fibres musculaires striées**.

Un myocyte strié est de forme cylindrique, allongé (jusqu'à plusieurs cm), plurinucléé. Le cytoplasme est composé d'un cytosquelette formé de myofilaments (actine/myosine) organisés en sarcomères et dont la succession linéaire forme la myofibrille.

Description du muscle strié squelettique

Le myocyte et la contraction musculaire

Contraction du muscle squelettique

Cas du muscle cardiaque

Les cardiomyocytes contractiles :

- représentent 99 % du myocarde (muscle cardiaque) ;
- sont striés (ont des sarcomères), séparés par un disque intercalaire, mononucléés et leur forme prend parfois l'aspect d'un X ou d'un Y ;
- communiquent entre eux grâce à des **jonctions Gap** qui assurent propagation de l'excitabilité et coordination de la contraction ;
- ont une contraction résultant de la dépolarisation membranaire par les **cellules nodales** (1 % du myocarde) responsables de l'**automatisme cardiaque**.

Due au raccourcissement des **sarcomères** (unités contractiles du muscle) et nécessite Ca²⁺ et ATP.

Un sarcomère est délimité par **deux stries (ou lignes) Z** entre lesquelles on observe une alternance des myofilaments d'**actine (fins)** et de **myosine (épais).** Celle-ci met en évidence :

- une bande H et une bande A (sombre) au centre :
- deux demi-bandes I (claires) aux extrémités.

Durant la contraction, le glissement des myofilaments de **myosine** sur les myofilaments d'**actine** diminue les bandes I et H mais pas la bande A, sans qu'il y ait modification de longueur des myofilaments.

Ensemble des réactions biochimiques qui permet de lire l'information stockée dans un gène afin d'aboutir à la synthèse de molécules nécessaires aux fonctionnements cellulaires et extracellulaires

Elle débute toujours par la **transcription** et peut, selon le cas, se poursuivre avec la traduction.

Transcription

Suite de réactions aboutissant à la synthèse d'un ARN à partir de la lecture d'une séquence d'ADN d'un gène ; se déroule dans le noyau des cellules eucarvotes et est assurée par un complexe enzymatique : l'ARN polymérase.

L'ARN formé

- est simple brin, a la même séguence que le brin sens (ou brin codant) de l'ADN, sauf que l'ARN contient U à la place de T ;
- peut être un ARN fonctionnel avec une fonction biologique propre (ARNr [ribosomal], ARNt [transfert], etc.) ou un ARNm (messager qui porte l'information nécessaire à la synthèse d'un peptide ou d'une protéine).

Modification de la séguence des nucléotides de l'ADN qui peut causer une modification de l'enchaînement des acides aminés sur la chaîne protéique.

Une mutation génétique est :

- ponctuelle si elle ne concerne qu'un seul nucléotide (addition, délétion, substitution d'un nucléotide) :
- silencieuse si elle ne change pas l'acide aminé sur la protéine ;
- non silencieuse si elle affecte la séquence d'un acide aminé. Dans ce cas, la protéine formée est alors non fonctionnelle

L'expression génétique

Mutation génétique

Principe

Traduction

Suite de réactions aboutissant à la synthèse d'un peptide ou d'une protéine à partir de la lecture (ou du décodage) d'un ARNm.

Se déroule dans le **cytoplasme** des cellules eucaryotes et est assurée par les ribosomes et les ARNt qui fournissent les acides aminés.

L'ARNm dicte la séguence d'assemblage des acides aminés selon le principe du code génétique : un codon de l'ARNm (suite de trois nucléotides de l'ARNm) correspond à un acide aminé donné.

Transmission des caractères (héréditaires) d'un organisme vivant à la génération suivante. Ces derniers sont dictés par les **gènes**.

Hérédité

Séquence d'ADN qui porte l'information nécessaire à l'expression d'un caractère héréditaire (voir page précédente). Dans une cellule, les chromosomes sont le support des gènes d'un individu, un chromosome étant composé d'ADN et de protéines.

La transmission d'un **allèle muté** (récessif ou dominant) peut conduire à l'apparition d'une **maladie génétique** (ou héréditaire).

Dans l'hérédité autosomique, l'allèle muté est porté par un autosome, elle est **gonosomique** s'il est porté par X ou Y :

- la maladie est **dominante** si un seul allèle muté suffit à conduire à un phénotype malade ; présente à chaque génération ;
- la maladie est récessive si la présence de deux allèles mutés est nécessaire pour conduire à un phénotype malade ; pas présente à chaque génération.

Hérédité et maladies génétiques

Chromosomes

Gène

Toutes les cellules somatiques humaines contiennent 23 paires de chromosomes (46 en tout) avec, pour chaque paire, un chromosome provenant de la mère et un du père. On distingue les autosomes (chromosomes non sexuels ; 22 paires) des gonosomes (chromosomes sexuels ; une paire XX chez la femme. XY chez l'hommel.

Notions autour de l'hérédité

Phénotype

Génotype

Partie donnée du matériel génétique d'un individu. Il correspond plus exactement à la composition en allèles de tous ses gènes. Allèles

Dans les cellules diploïdes, les gènes existent en deux exemplaires : un gène pour un chromosome donné, l'autre pour son homologue (exception avec la paire XY). On parle d'allèle. C'est une forme variable d'un même gène, chacun occupant la même position (locus) sur des chromosomes homologues.

Un allèle est **dominant** s'il masque l'autre allèle (qualifié de **récessif**). On parle de **codominance** si aucun allèle n'est dominant par rapport à l'autre.

Un individu est homozygote pour un gène donné si ses deux allèles sont identiques, il est hétérozygote dans le cas contraire.

Ensemble des caractères observables d'un individu (couleurs des yeux, groupes sanguins, etc.) qui résultent de l'expression du génotype.

230 cartes mentales pour réviser toute l'UE 2!

Les cartes mentales, ou *mind map*, constituent **une méthode de révision efficace, synthétique et didactique :** elles permettent de revoir en un coup d'œil **toutes les notions à connaître pour réussir ses évaluations en IFSI.** Visuelles et colorées, elles abordent tous les aspects et/ou composantes de chaque thématique au programme pour permettre une mémorisation efficace, UE par UE.

Avec ses 230 *mind map* rédigées par des cadres formateurs en IFSI, ce petit livre propose de faire un tour exhaustif de l'**UE 2 « Sciences biologiques et médicales » des semestres 1 à 5 :**

UE 2.1 S1 « Biologie fondamentale »

UE 2.2 S1 « Cycles de la vie et grandes fonctions »

UE 2.3 S2 « Santé, maladie, handicap, accidents de la vie »

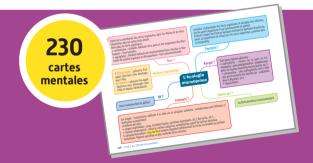
UE 2.4 S1 « Processus traumatiques »

UE 2.5 S3 « Processus inflammatoires et infectieux »

UE 2.6 S2 et S5 « Processus psychopathologiques »

UE 2.7 S4 « Défaillances organiques et processus dégénératifs »

UE 2.8 S3 « Processus obstructifs »


UE 2.9 S5 « Processus tumoraux »

UE 2.10 S1 « Infectiologie et hygiène »

UE 2.11 S1, S3 et S5 « Pharmacologie et thérapeutiques »

Retrouvez un double sommaire, organisé par semestre et sous forme d'arbre par UE, pour bien comprendre les attendus de chaque semestre et le lien entre les différentes notions développées.

